4/21/2016

File=module1-architecture.htm; updated 5/13/2013
Figures shown in these notes are from Oracle® Database Concepts 11g Release 2

Objectives

Module 1- Oracle Architecture

Module 1 — Oracle Architecture

These notes introduce the Oracle server architecture. The architecture includes physical
components, memory components, processes, and logical structures.

Primary Architecture Components

Overview of Primary Components

System Global Area (SGA)

Database Buffer Cache

{default size)

Database Buffer Cache
(additional size nK}

KEEP Buffer

Pool

RECYCLE
Buffer Pool

Large Pool

Java Pool

Streams Pool

Redo Log Buffer Cache

|
|
|
|

Reserved Pool

Library Cache

Data
Dictionary
Cache

Shared
SOL Area

Control
Structures

PLISOL
Procedures
& Packages

Fixed SGA

Shared
Server
Pracess

‘ | nawni | LGWRI

Semver
Process

Dedicated

User

Process

Datafiles

Redo
Laog Files

The figure shown above details the Oracle architecture.

CKPT

Control Files

Oracle server: An Oracle server includes an Oracle Instance and an Oracle database.
¢ An Oracle database includes several different types of files: datafiles, control files, redo log
files and archive redo log files. The Oracle server also accesses parameter files and

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm

1/33

4/21/2016 Module 1- Oracle Architecture

password files.
e This set of files has several purposes.
o One is to enable system users to process SQL statements.
o Another is to improve system performance.
o Still another is to ensure the database can be recovered if there is a software/hardware
failure.
e The database server must manage large amounts of data in a multi-user environment.
e The server must manage concurrent access to the same data.
e The server must deliver high performance. This generally means fast response times.

Oracle instance: An Oracle Instance consists of two different sets of components:
e The first component set is the set of background processes (PMON, SMON, RECO, DBWO,
LGWR, CKPT, D000 and others).
o These will be covered later in detail — each background process is a computer program.
o These processes perform input/output and monitor other Oracle processes to provide
good performance and database reliability.
e The second component set includes the memory structures that comprise the Oracle
instance.
o When an instance starts up, a memory structure called the System Global Area (SGA) is
allocated.
o At this point the background processes also start.

¢ An Oracle Instance provides access to one and only one Oracle database.

Oracle database: An Oracle database consists of files.
e Sometimes these are referred to as operating system files, but they are actually database
files that store the database information that a firm or organization needs in order to operate.
e The redo log files are used to recover the database in the event of application program
failures, instance failures and other minor failures.
e The archived redo log files are used to recover the database if a disk fails.
e Other files not shown in the figure include:
o The required parameter file that is used to specify parameters for configuring an Oracle
instance when it starts up.
o The optional password file authenticates special users of the database — these are
termed privileged users and include database administrators.
o Alert and Trace Log Files — these files store information about errors and actions taken
that affect the configuration of the database.

User and server processes: The processes shown in the figure are called user and server
processes. These processes are used to manage the execution of SQL statements.

e A Shared Server Process can share memory and variable processing for multiple user
processes.
e A Dedicated Server Process manages memory and variables for a single user process.

This figure from the Oracle Database Administration Guide provides another way of viewing the
SGA.

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 2/33

4/21/2016 Module 1- Oracle Architecture

Instance
System Global A SGA
TR T ree) Free Memory
Shared Pool Large Pool / 11O Buffer Area
Library Cache / / UGA
Shared SQL Area gg:-"ale m ™ - [| _/
l e mn & PHIR Area 0 B
SELECT * FROM | | |igt o g g WO &P | PMON
(. _Mjpilo_ye_'ﬂs_ A Server Only) | | ~ —O ./
[] | o
=P | SMON
Data Server | | Other Reserved Response Request
Dicticnary | |Result Pool Queue Queue
Cache Cache == | RECO
4P| MMON
Database Fixed Java Streams
Buffer Cache SGA Pool Pool | MMNL
R e
S 4| Others
)
A Background
I Processes
PGA .4 .4
S{I'JL Work Are:as POy DBWn| | CKPT LGWR| | ARCn| | RVWR
_ L o Ly Process
Session Memory | Private SFL Area

N

Client
Process

Connecting to an Oracle Instance — Creating a Session

Connecting to an Oracle Instance:
+ Establishing a user connection
+ Creating a session

Server

(oo Iy

process
Session created

Connection
established

User
process

e

Database user

Oracle Server

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm

3/33

4/21/2016 Module 1- Oracle Architecture

System users can connect to an Oracle database through SQLPIus or through an application
program like the Internet Developer Suite (the program becomes the system user). This connection
enables users to execute SQL statements.

The act of connecting creates a communication pathway between a user process and an Oracle
Server. As is shown in the figure above, the User Process communicates with the Oracle Server
through a Server Process. The User Process executes on the client computer. The Server Process
executes on the server computer, and actually executes SQL statements submitted by the system
user.

The figure shows a one-to-one correspondence between the User and Server Processes. This is
called a Dedicated Server connection. An alternative configuration is to use a Shared Server
where more than one User Process shares a Server Process.

Sessions: When a user connects to an Oracle server, this is termed a session. The User Global
Area is session memory and these memory structures are described later in this document. The
session starts when the Oracle server validates the user for connection. The session ends when the
user logs out (disconnects) or if the connection terminates abnormally (network failure or client
computer failure).

A user can typically have more than one concurrent session, e.g., the user may connect using
SQLPIlus and also connect using Internet Developer Suite tools at the same time. The limit of
concurrent session connections is controlled by the DBA.

If a system users attempts to connect and the Oracle Server is not running, the system user
receives the Oracle Not Available error message.

Physical Structure — Database Files

As was noted above, an Oracle database consists of physical files. The database itself has:
e Datafiles — these contain the organization's actual data.
e Redo log files — these contain a chronological record of changes made to the database, and
enable recovery when failures occur.
e Control files — these are used to synchronize all database activities and are covered in more
detail in a later module.

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 4/33

4/21/2016 Module 1- Oracle Architecture

Physical Structure

The physical structure includes three types of files:
« Control files

« Datafiles
« Redo log files (:C:\
Vi o Header Control
files
Datafiles
Online {includes)
Redo Log . Eflata s
files Dictionary) |/
.

Other key files as noted above include:
e Parameter file — there are two types of parameter files.

o The init.ora file (also called the PFILE) is a static parameter file. It contains parameters
that specify how the database instance is to start up. For example, some parameters
will specify how to allocate memory to the various parts of the system global area.

o The spfile.ora is a dynamic parameter file. It also stores parameters to specify how to
startup a database; however, its parameters can be modified while the database is
running.

e Password file — specifies which *special* users are authenticated to startup/shut down an
Oracle Instance.

e Archived redo log files — these are copies of the redo log files and are necessary for recovery
in an online, transaction-processing environment in the event of a disk failure.

Memory Management and Memory Structures

Oracle Database Memory Management

Memory management - focus is to maintain optimal sizes for memory structures.
e Memory is managed based on memory-related initialization parameters.
e These values are stored in the init.ora file for each database.

Three basic options for memory management are as follows:
e Automatic memory management:
o DBA specifies the target size for instance memory.
o The database instance automatically tunes to the target memory size.
o Database redistributes memory as needed between the SGA and the instance PGA.

¢ Automatic shared memory management:
o This management mode is partially automated.
o DBA specifies the target size for the SGA.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 5/33

http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CHDIDGDJ

4/21/2016 Module 1- Oracle Architecture

o DBA can optionally set an aggregate target size for the PGA or managing PGA work
areas individually.

¢ Manual memory management:
o Instead of setting the total memory size, the DBA sets many initialization parameters to
manage components of the SGA and instance PGA individually.

If you create a database with Database Configuration Assistant (DBCA) and choose the basic
installation option, then automatic memory management is the default.

The memory structures include three areas of memory:
e System Global Area (SGA) — this is allocated when an Oracle Instance starts up.
e Program Global Area (PGA) — this is allocated when a Server Process starts up.
e User Global Area (UGA) — this is allocated when a user connects to create a session.

System Global Area

The SGA is a read/write memory area that stores information shared by all database processes and
by all users of the database (sometimes it is called the Shared Global Area).
o This information includes both organizational data and control information used by the Oracle
Server.
o The SGA is allocated in memory and virtual memory.
o The size of the SGA can be established by a DBA by assigning a value to the parameter
SGA_MAX_SIZE in the parameter file—this is an optional parameter.

The SGA is allocated when an Oracle instance (database) is started up based on values specified in
the initialization parameter file (either PFILE or SPFILE).

The SGA has the following mandatory memory structures:
e Database Buffer Cache
e Redo Log Buffer
e Java Pool
e Streams Pool
e Shared Pool — includes two components:
o Library Cache
o Data Dictionary Cache
Other structures (for example, lock and latch management, statistical data)

Additional optional memory structures in the SGA include:
e Large Pool

The SHOW SGA SQL command will show you the SGA memory allocations.
e This is a recent clip of the SGA for the DBORCL database at SIUE.

e |n order to execute SHOW SGA you must be connected with the special privilege SYSDBA
(which is only available to user accounts that are members of the DBA Linux group).

SQL> connect / as sysdba
Connected.
SQL> show sga

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 6/33

4/21/2016 Module 1- Oracle Architecture

Total System Global Area 1610612736 bytes

Fixed Size 2084296 bytes
Variable Size 1006633528 bytes
Database Buffers 587202560 bytes
Redo Buffers 14692352 bytes

Early versions of Oracle used a Static SGA. This meant that if modifications to memory
management were required, the database had to be shutdown, modifications were made to the
init.ora parameter file, and then the database had to be restarted.

Oracle 11g uses a Dynamic SGA. Memory configurations for the system global area can be made
without shutting down the database instance. The DBA can resize the Database Buffer Cache and
Shared Pool dynamically.

Several initialization parameters are set that affect the amount of random access memory dedicated
to the SGA of an Oracle Instance. These are:

e SGA_MAX_SIZE: This optional parameter is used to set a limit on the amount of virtual
memory allocated to the SGA — a typical setting might be 1 GB; however, if the value for
SGA_MAX_SIZE in the initialization parameter file or server parameter file is less than the sum
the memory allocated for all components, either explicitly in the parameter file or by default, at
the time the instance is initialized, then the database ignores the setting for SGA_MAX_SIZE.
For optimal performance, the entire SGA should fit in real memory to eliminate paging to/from
disk by the operating system.

e DB_CACHE_SIZE: This optional parameter is used to tune the amount memory allocated to
the Database Buffer Cache in standard database blocks. Block sizes vary among operating
systems. The DBORCL database uses 8 KB blocks. The total blocks in the cache defaults to
48 MB on LINUX/UNIX and 52 MB on Windows operating systems.

e LOG_BUFFER: This optional parameter specifies the number of bytes allocated for the Redo
Log Buffer.

e SHARED_POOL_SIZE: This optional parameter specifies the number of bytes of memory
allocated to shared SQL and PL/SQL. The defaultis 16 MB. If the operating system is based
on a 64 bit configuration, then the default size is 64 MB.

e LARGE_POOL_SIZE: This is an optional memory object — the size of the Large Pool defaults
to zero. If the init.ora parameter PARALLEL_AUTOMATIC_TUNING is set to TRUE, then the
default size is automatically calculated.

e JAVA_POOL_SIZE: This is another optional memory object. The default is 24 MB of
memory.

The size of the SGA cannot exceed the parameter SGA_MAX_SIZE minus the combination of the
size of the additional parameters, DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_SIZE,
LARGE_POOL_SIZE, and JAVA_POOL_SIZE.

Memory is allocated to the SGA as contiguous virtual memory in units termed granules. Granule
size depends on the estimated total size of the SGA, which as was noted above, depends on the
SGA_MAX_SIZE parameter. Granules are sized as follows:

e |fthe SGA is less than 1 GB in total, each granule is 4 MB.
e |fthe SGA is greater than 1 GB in total, each granule is 16 MB.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 7/33

4/21/2016 Module 1- Oracle Architecture

Granules are assigned to the Database Buffer Cache, Shared Pool, Java Pool, and other memory
structures, and these memory components can dynamically grow and shrink. Using contiguous
memory improves system performance. The actual number of granules assigned to one of these
memory components can be determined by querying the database view named
V$BUFFER_POOL.

Granules are allocated when the Oracle server starts a database instance in order to provide
memory addressing space to meet the SGA_MAX_SIZE parameter. The minimum is 3 granules:
one each for the fixed SGA, Database Buffer Cache, and Shared Pool. In practice, you'll find the
SGA is allocated much more memory than this. The SELECT statement shown below shows a
current_size of 1,152 granules.

SELECT name, block_size, current size, prev_size, prev_buffers
FROM v$buffer pool;

NAME BLOCK_SIZE CURRENT SIZE PREV_SIZE PREV_BUFFERS

DEFAULT 8192 560 576 71244

For additional information on the dynamic SGA sizing, enroll in Oracle's Oracle11g Database
Performance Tuning course.

Program Global Area (PGA)

A PGAis:
e a nonshared memory region that contains data and control information exclusively for use by
an Oracle process.
e A PGA s created by Oracle Database when an Oracle process is started.
e One PGA exists for each Server Process and each Background Process. It stores data and
control information for a single Server Process or a single Background Process.

e ltis allocated when a process is created and the memory is scavenged by the operating
system when the process terminates. This is NOT a shared part of memory — one PGA to
each process only.

e The collection of individual PGAs is the total instance PGA, or instance PGA.

e Database initialization parameters set the size of the instance PGA, not individual PGAs.

The Program Global Area is also termed the Process Global Area (PGA) and is a part of memory
allocated that is outside of the Oracle Instance.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 8/33

4/21/2016 Module 1-

Instance PGA

Oracle Architecture

—1 SQL Work Areas

PGA |
I 1
S?L Work Arefls Server
Process
Session Memory | Private E‘EQL Area
PGA
i 1
S?L Work Are?s Server
: Process
Session Memory | Private S:(}L Area
PGA
L) 1
S?L Work ;GJEIES Server
1 Process
Session Memory | Private SEGL Area
1
PGA
Sort Area Hash Area Bitmap Merge Area
Session Memory P“':.',:L““t H"'n':gg'“

— Private SQL Area

The content of the PGA varies, but as shown in the figure above, generally includes the following:

o Private SQL Area: Stores information for a parsed SQL statement — stores bind variable values
and runtime memory allocations. A user session issuing SQL statements has a Private SQL Area
that may be associated with a Shared SQL Area if the same SQL statement is being executed by
more than one system user. This often happens in OLTP environments where many users are
executing and using the same application program.

o Dedicated Server environment — the Private SQL Area is located in the Program Global

Area.

o Shared Server environment — the Private SQL Area is located in the System Global Area.

e Session Memory: Memory that holds session variables and other session information.

e SQL Work Areas: Memory allocated for sort, hash-join, bitmap merge, and bitmap create types

of operations.

o Oracle 9i and later versions enable automatic sizing of the SQL Work Areas by setting the
WORKAREA_SIZE_POLICY = AUTO parameter (this is the default!) and
PGA_AGGREGATE_TARGET = n (where n is some amount of memory established by the

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm

9/33

4/21/2016 Module 1- Oracle Architecture

DBA). However, the DBA can let the Oracle DBMS determine the appropriate amount of
memory.

User Global Area

The User Global Area is session memory.
UGA

Session Variables

OLAP Pool

A session that loads a PL/SQL package into memory has the package state stored to the UGA.
The package state is the set of values stored in all the package variables at a specific time. The
state changes as program code the variables. By default, package variables are unique to and
persist for the life of the session.

The OLAP page pool is also stored in the UGA. This pool manages OLAP data pages, which are
equivalent to data blocks. The page pool is allocated at the start of an OLAP session and released
at the end of the session. An OLAP session opens automatically whenever a user queries a
dimensional object such as a cube.

Note: Oracle OLAP is a multidimensional analytic engine embedded in Oracle Database
11g. Oracle OLAP cubes deliver sophisticated calculations using simple SQL queries -
producing results with speed of thought response times.

The UGA must be available to a database session for the life of the session. For this reason, the
UGA cannot be stored in the PGA when using a shared server connection because the PGA is
specific to a single process. Therefore, the UGA is stored in the SGA when using shared server
connections, enabling any shared server process access to it. When using a dedicated server
connection, the UGA is stored in the PGA.

Automatic Shared Memory Management

Prior to Oracle 10G, a DBA had to manually specify SGA Component sizes through the initialization
parameters, such as SHARED POOL_SIZE, DB_CACHE_SIZE, JAVA POOL_SIZE, and
LARGE_POOL_SIZE parameters.

Automatic Shared Memory Management enables a DBA to specify the total SGA memory
available through the SGA_TARGET initialization parameter. The Oracle Database automatically
distributes this memory among various subcomponents to ensure most effective memory utilization.

The DBORCL database SGA TARGET is set in the initDBORCL.ora file:

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 10/33

http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CBAIDJHG
http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CHDICHHI
http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CHDCIHAG
http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CBAGDHDC
http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CBAIBCHE

4/21/2016 Module 1- Oracle Architecture

sga_target=1610612736

With automatic SGA memory management, the different SGA components are flexibly sized to
adapt to the SGA available.

Setting a single parameter simplifies the administration task — the DBA only specifies the amount of
SGA memory available to an instance — the DBA can forget about the sizes of individual
components. No out of memory errors are generated unless the system has actually run out of
memory. No manual tuning effort is needed.

The SGA_TARGET initialization parameter reflects the total size of the SGA and includes memory
for the following components:
o Fixed SGA and other internal allocations needed by the Oracle Database instance
e The log buffer
e The shared pool
The Java pool
The buffer cache
The keep and recycle buffer caches (if specified)
Nonstandard block size buffer caches (if specified)
The Streams Pool

If SGA_TARGET is set to a value greater than SGA_MAX_SIZE at startup, then the
SGA_ MAX_SIZE value is bumped up to accommodate SGA TARGET.
When you set a value for SGA_TARGET, Oracle Database 11g automatically sizes the most
commonly configured components, including:
e The shared pool (for SQL and PL/SQL execution)
e The Java pool (for Java execution state)
e The large pool (for large allocations such as RMAN backup buffers)
e The buffer cache

There are a few SGA components whose sizes are not automatically adjusted. The DBA must
specify the sizes of these components explicitly, if they are needed by an application. Such
components are:
o Keep/Recycle buffer caches (controlled by DB_KEEP_CACHE_SIZE and
DB_RECYCLE_CACHE_SIZE)
o Additional buffer caches for non-standard block sizes (controlled by DB_nK_CACHE_SIZE, n =
{2, 4,8, 16, 32})
e Streams Pool (controlled by the new parameter STREAMS_POOL_SIZE)

The granule size that is currently being used for the SGA for each component can be viewed in the
view V$SGAINFO. The size of each component and the time and type of the last resize operation
performed on each component can be viewed in the view VESGA_DYNAMIC_COMPONENTS.

SQL> select * from v$sgainfo;

More. ..
NAME BYTES RES
Fixed SGA Size 2084296 No

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 11/33

4/21/2016

Module 1- Oracle Architecture

Redo Buffers 14692352 No
Buffer Cache Size 587202560 Yes
Shared Pool Size 956301312 Yes
Large Pool Size 16777216 Yes
Java Pool Size 33554432 Yes93
Streams Pool Size 0 Yes
Granule Size 16777216 No
Maximum SGA Size 1610612736 No
Startup overhead in Shared Pool 67108864 No
Free SGA Memory Available 0

11l rows selected.

Shared Pool

Shared Pool

+ Used to store:
— Most recently executed SQL statements
— Most recently used data definitions

« It consists of two key performance-related memory
structures:

— Library Cache
— Data Dictionary Cache

+ Sized by the parameter
SHARED POOL SIZE

Shared Pool

Library Cache

Shared SGL Area

« Parsed SOL Statements
« SAL Execution Plans
- Parsed and Compiled PL/SQL Program Units

Private SQL Area
(Shared Server Only)

ALTER SYSTEM SET
SHARED POOL SIZE = 64M;

Data Dictionary Server Result Other Reserved
Cache Cache Poaol
Dictionary SQL Query
Data Stored Result Cache
in Rows

PL/SQL Function
Result Cache

The Shared Pool is a memory structure that is shared by all system users.
e |t caches various types of program data. For example, the shared pool stores parsed SQL,
PL/SQL code, system parameters, and data dictionary information.
e The shared pool is involved in almost every operation that occurs in the database. For
example, if a user executes a SQL statement, then Oracle Database accesses the shared
pool.

¢ |t consists of both fixed and variable structures.
e The variable component grows and shrinks depending on the demands placed on memory

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 12/33

http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CHDJCHJA

4/21/2016 Module 1- Oracle Architecture
size by system users and application programs.

Memory can be allocated to the Shared Pool by the parameter SHARED_POOL_SIZE in the
parameter file. The default value of this parameter is 8MB on 32-bit platforms and 64MB on 64-bit
platforms. Increasing the value of this parameter increases the amount of memory reserved for the
shared pool.

You can alter the size of the shared pool dynamically with the ALTER SYSTEM SET command. An
example command is shown in the figure below. You must keep in mind that the total memory
allocated to the SGA is set by the SGA_TARGET parameter (and may also be limited by the
SGA_MAX_SIZE if it is set), and since the Shared Pool is part of the SGA, you cannot exceed the
maximum size of the SGA. It is recommended to let Oracle optimize the Shared Pool size.

The Shared Pool stores the most recently executed SQL statements and used data definitions. This
is because some system users and application programs will tend to execute the same SQL
statements often. Saving this information in memory can improve system performance.

The Shared Pool includes several cache areas described below.

Library Cache

Memory is allocated to the Library Cache whenever an SQL statement is parsed or a program unit
is called. This enables storage of the most recently used SQL and PL/SQL statements.

If the Library Cache is too small, the Library Cache must purge statement definitions in order to have
space to load new SQL and PL/SQL statements. Actual management of this memory structure is
through a Least-Recently-Used (LRU) algorithm. This means that the SQL and PL/SQL
statements that are oldest and least recently used are purged when more storage space is needed.

The Library Cache is composed of two memory subcomponents:

e Shared SQL: This stores/shares the execution plan and parse tree for SQL statements, as
well as PL/SQL statements such as functions, packages, and triggers. If a system user
executes an identical statement, then the statement does not have to be parsed again in order
to execute the statement.

e Private SQL Area: With a shared server, each session issuing a SQL statement has a private
SQL area in its PGA.

o Each user that submits the same statement has a private SQL area pointing to the
same shared SQL area.

o Many private SQL areas in separate PGAs can be associated with the same shared
SQL area.

o This figure depicts two different client processes issuing the same SQL statement —
the parsed solution is already in the Shared SQL Area.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 13/33

4/21/2016 Module 1- Oracle Architecture

Instance
System Global Area (SGA)
Shared Pool
Library Cache
Shared SQL Area | [Privats
"geLecT « From | | |SOL Area
" employees | [(Shared
| et EEE Server Only)
Data Server | | Other | |Reserved
Digtionary | | Result Paol
Cache Cache
. PGA . PGA
Server SQL Work Areas Server SQL Work Areas
Process : ; by Process : z L
Sesslon Memory | Private SIL‘JL Area Session Memory | Private SIQL Area
T SELECT * FROM employees SELECT * FROM employees
Client Client
Process Process

Data Dictionary Cache

The Data Dictionary Cache is a memory structure that caches data dictionary information that has
been recently used.
e This cache is necessary because the data dictionary is accessed so often.

¢ Information accessed includes user account information, datafile names, table descriptions,
user privileges, and other information.

The database server manages the size of the Data Dictionary Cache internally and the size depends
on the size of the Shared Pool in which the Data Dictionary Cache resides. If the size is too small,
then the data dictionary tables that reside on disk must be queried often for information and this will
slow down performance.

Server Result Cache

The Server Result Cache holds result sets and not data blocks. The server result cache contains the
SQL query result cache and PL/SQL function result cache, which share the same infrastructure.

SQL Query Result Cache

This cache stores the results of queries and query fragments.
e Using the cache results for future queries tends to improve performance.

e For example, suppose an application runs the same SELECT statement repeatedly. If the
results are cached, then the database returns them immediately.

¢ |n this way, the database avoids the expensive operation of rereading blocks and recomputing
http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 14/33

4/21/2016 Module 1- Oracle Architecture
results.

PL/SQL Function Result Cache

The PL/SQL Function Result Cache stores function result sets.
e Without caching, 1000 calls of a function at 1 second per call would take 1000 seconds.
¢ With caching, 1000 function calls with the same inputs could take 1 second total.

e Good candidates for result caching are frequently invoked functions that depend on relatively
static data.

e PL/SQL function code can specify that results be cached.

_Buffer Caches

A number of buffer caches are maintained in memory in order to improve system response time.

Database Buffer Cache

The Database Buffer Cache is a fairly large memory object that stores the actual data blocks that
are retrieved from datafiles by system queries and other data manipulation language commands.

The purpose is to optimize physical input/output of data.

When Database Smart Flash Cache (flash cache) is enabled, part of the buffer cache can reside
in the flash cache.

e This buffer cache extension is stored on a flash disk device, which is a solid state storage
device that uses flash memory.

e The database can improve performance by caching buffers in flash memory instead of reading
from magnetic disk.

e Database Smart Flash Cache is available only in Solaris and Oracle Enterprise Linux.

A query causes a Server Process to look for data.
e The first look is in the Database Buffer Cache to determine if the requested information
happens to already be located in memory — thus the information would not need to be
retrieved from disk and this would speed up performance.

¢ |[f the information is not in the Database Buffer Cache, the Server Process retrieves the
information from disk and stores it to the cache.

e Keep in mind that information read from disk is read a block at a time, NOT a row at a time,
because a database block is the smallest addressable storage space on disk.

Database blocks are kept in the Database Buffer Cache according to a Least Recently Used (LRU)
algorithm and are aged out of memory if a buffer cache block is not used in order to provide space
for the insertion of newly needed database blocks.

There are three buffer states:
e Unused - a buffer is available for use - it has never been used or is currently unused.
e Clean - a buffer that was used earlier - the data has been written to disk.
o Dirty - a buffer that has modified data that has not been written to disk.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 15/33

4/21/2016 Module 1- Oracle Architecture

Each buffer has one of two access modes:
e Pinned - a buffer is pinned so it does not age out of memory.
e Free (unpinned).

The buffers in the cache are organized in two lists:
e the write list and,
e the least recently used (LRU) list.

The write list (also called a write queue) holds dirty buffers — these are buffers that hold that data
that has been modified, but the blocks have not been written back to disk.

The LRU list holds unused, free clean buffers, pinned buffers, and free dirty buffers that have not
yet been moved to the write list. Free clean buffers do not contain any useful data and are
available for use. Pinned buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most recently
used (MRU) end of the LRU list — this causes dirty buffers to age toward the LRU end of the LRU
list.

When an Oracle user process needs a data row, it searches for the data in the database buffer
cache because memory can be searched more quickly than hard disk can be accessed. If the data
row is already in the cache (a cache hit), the process reads the data from memory; otherwise a
cache miss occurs and data must be read from hard disk into the database buffer cache.

Before reading a data block into the cache, the process must first find a free buffer. The process
searches the LRU list, starting at the LRU end of the list. The search continues until a free buffer is
found or until the search reaches the threshold limit of buffers.

Each time a user process finds a dirty buffer as it searches the LRU, that buffer is moved to the write
list and the search for a free buffer continues.

When a user process finds a free buffer, it reads the data block from disk into the buffer and moves
the buffer to the MRU end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a free buffer, the

process stops searching the LRU list and signals the DBWn background process to write some of
the dirty buffers to disk. This frees up some buffers.

Database Buffer Cache Block Size

The block size for a database is set when a database is created and is determined by the init.ora
parameter file parameter named DB_BLOCK_SIZE.
e Typical block sizes are 2KB, 4KB, 8KB, 16KB, and 32KB.
e The size of blocks in the Database Buffer Cache matches the block size for the database.
e The DBORCL database uses an 8KB block size.

e This figure shows that the use of non-standard block sizes results in multiple database buffer
cache memory allocations.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 16/33

4/21/2016 Module 1- Oracle Architecture

Database Buffer Cache
Default 2K

Keep Recycle 16K

Because tablespaces that store oracle tables can use different (non-standard) block sizes, there can
be more than one Database Buffer Cache allocated to match block sizes in the cache with the block
sizes in the non-standard tablespaces.

The size of the Database Buffer Caches can be controlled by the parameters DB_CACHE_SIZE
and DB_nK_CACHE_SIZE to dynamically change the memory allocated to the caches without
restarting the Oracle instance.

You can dynamically change the size of the Database Buffer Cache with the ALTER SYSTEM
command like the one shown here:

ALTER SYSTEM SET DB _CACHE SIZE = 96M;

You can have the Oracle Server gather statistics about the Database Buffer Cache to help you size it
to achieve an optimal workload for the memory allocation. This information is displayed from the
V$DB_CACHE_ADVICE view. In order for statistics to be gathered, you can dynamically alter the
system by using the ALTER SYSTEM SET DB_CACHE_ADVICE (OFF, ON, READY) command.
However, gathering statistics on system performance always incurs some overhead that will slow
down system performance.

SQL> ALTER SYSTEM SET db cache_advice = ON;
System altered.

SQL> DESC VS$DB_cache advice;

Name Null? Type

ID NUMBER

NAME VARCHAR2 (20)
BLOCK_SIZE NUMBER
ADVICE_STATUS VARCHAR2 (3)
SIZE_FOR ESTIMATE NUMBER
SIZE_FACTOR NUMBER
BUFFERS_FOR_ESTIMATE NUMBER
ESTD_PHYSICAL READ FACTOR NUMBER

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 17/33

4/21/2016 Module 1- Oracle Architecture

ESTD PHYSICAL READS NUMBER
ESTD PHYSICAL READ TIME NUMBER
ESTD PCT OF DB_TIME FOR READS NUMBER
ESTD CLUSTER READS NUMBER
ESTD CLUSTER READ TIME NUMBER

SQL> SELECT name, block size, advice status FROM v$db cache advice;
NAME BLOCK_SIZE ADV

DEFAULT 8192 ON
<more rows will display>
21 rows selected.

SQL> ALTER SYSTEM SET db cache_advice = OFF;

System altered.

KEEP Buffer Pool

This pool retains blocks in memory (data from tables) that are likely to be reused throughout daily
processing. An example might be a table containing user names and passwords or a validation
table of some type.

The DB_KEEP_CACHE_SIZE parameter sizes the KEEP Buffer Pool.

RECYCLE Buffer Pool

This pool is used to store table data that is unlikely to be reused throughout daily processing — thus
the data blocks are quickly removed from memory when not needed.

The DB_RECYCLE_CACHE_SIZE parameter sizes the Recycle Buffer Pool.

Redo Log Buffer

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 18/33

4/21/2016 Module 1- Oracle Architecture

Redo Log Buffer

- Records all changes made to the database data
blocks

+ Primary purpose is recovery
+ Changes recorded within are called redo entries

+ Redo entries contain information to reconstruct
or redo changes
- Size defined by LOG_BUFFER

Database
Buffer Cache

~.. mems Joune N[
PGA ,l v

| ¥]
| SQL Work Areas Server LGWR
= — t———— Process
| Session Memory | Private SOL Area
| i
v

The Redo Log Buffer memory object stores images of all changes made to database blocks.

e Database blocks typically store several table rows of organizational data. This means that if a
single column value from one row in a block is changed, the block image is stored. Changes
include INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP.

e LGWR writes redo sequentially to disk while DBWn performs scattered writes of data blocks to
disk.

o Scattered writes tend to be much slower than sequential writes.
o Because LGWR enable users to avoid waiting for DBWn to complete its slow writes, the
database delivers better performance.

The Redo Log Buffer as a circular buffer that is reused over and over. As the buffer fills up, copies
of the images are stored to the Redo Log Files that are covered in more detail in a later module.

Large Pool

The Large Pool is an optional memory structure that primarily relieves the memory burden placed
on the Shared Pool. The Large Pool is used for the following tasks if it is allocated:
¢ Allocating space for session memory requirements from the User Global Area where a Shared
Server is in use.

http://www.siue.edu/~dbock/cmis565/module1-architecture.htm 19/33

4/21/2016 Module 1- Oracle Architecture

e Transactions that interact with more than one database, e.g., a distributed database scenario.
e Backup and restore operations by the Recovery Manager (RMAN) process.
o RMAN uses this only if the BACKUP_DISK_IO = n and BACKUP_TAPE_IO_SLAVE =
TRUE parameters are set.
o If the Large Pool is too small, memory allocation for backup will fail and memory will be
allocated from the Shared Pool.
e Parallel execution message buffers for parallel server operations. The
PARALLEL_AUTOMATIC_TUNING = TRUE parameter must be set.

The Large Pool size is set with the LARGE_POOL_SIZE parameter — this is not a dynamic
parameter. It does not use an LRU list to manage memory.

Java Pool

The Java Pool is an optional memory object, but is required if the database has Oracle Java
installed and in use for Oracle JVM (Java Virtual Machine).
e The size is set with the JAVA_POOL_SIZE parameter that defaults to 24MB.

e The Java Pool is used for memory allocation to parse Java commands and to store data
associated with Java commands.

e Storing Java code and data in the Java Pool is analogous to SQL and PL/SQL code cached in
the Shared Pool.

Streams Pool

This pool stores data and control structures to support the Oracle Streams feature of Oracle
Enterprise Edition.

e Oracle Steams manages sharing of data and events in a distributed environment.
e |tis sized with the parameter STREAMS_POOL_SIZE.
o If STEAMS_POOL_SIZE is not set or is zero, the size of the pool grows dynamically.

Processes

You need to understand three different types of Processes:
e User Process: Starts when a database user requests to connect to an Oracle Server.

e Server Process: Establishes the Connection to an Oracle Instance when a User Process
requests connection — makes the connection for the User Process.

e Background Processes: These start when an Oracle Instance is started up.

Client Process

In order to use Oracle, you must connect to the database. This must occur whether you're using
SQLPIlus, an Oracle tool such as Designer or Forms, or an application program. The client process

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 20/33

4/21/2016 Module 1- Oracle Architecture
is also termed the user process in some Oracle documentation.

Client Process

« A program that requests interaction with the Oracle
server

+ Must first establish a connection
- Does not interact directly with the Oracle server

anver
Fiprocess
Connection

4 ! /4 established
Database user
This generates a User Process (a memory object) that generates programmatic calls through your

user interface (SQLPIlus, Integrated Developer Suite, or application program) that creates a session
and causes the generation of a Server Process that is either dedicated or shared.

Server Process

Server Process
+ A program that directly interacts with the Oracle
server
+ Fulfills calls generated and returns results
+ Can be Dedicated or Shared Server

Session created
Oracle server

"

Datal:.;ase user

A Server Process is the go-between for a Client Process and the Oracle Instance.
e Dedicated Server environment — there is a single Server Process to serve each Client
Process.
e Shared Server environment — a Server Process can serve several User Processes, although
with some performance reduction.
¢ Allocation of server process in a dedicated environment versus a shared environment is
covered in further detail in the Oracle11g Database Performance Tuning course offered by

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 21/33

4/21/2016 Module 1- Oracle Architecture
Oracle Education.

Background Processes

As is shown here, there are both mandatory, optional, and slave background processes that are
started whenever an Oracle Instance starts up. These background processes serve all system
users. We will cover mandatory process in detail.

Mandatory Background Processes
e Process Monitor Process (PMON)
e System Monitor Process (SMON)
o Database Writer Process (DBWn)
e Log Writer Process (LGWR)
e Checkpoint Process (CKPT)
e Manageability Monitor Processes (MMON and MMNL)
e Recover Process (RECO)

Optional Processes
e Archiver Process (ARCn)
e Coordinator Job Queue (CJQO)
e Dispatcher (number “nnn”) (Dnnn)
e Others

This query will display all background processes running to serve a database:

SELECT PNAME

FROM V$PROCESS

WHERE PNAME IS NOT NULL
ORDER BY PNAME;

PMON

The Process Monitor (PMON) monitors other background processes.
e |tis a cleanup type of process that cleans up after failed processes.

e Examples include the dropping of a user connection due to a network failure or the abnormal
termination (ABEND) of a user application program.

¢ |t cleans up the database buffer cache and releases resources that were used by a failed user
process.

e |t does the tasks shown in the figure below.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 22/33

4/21/2016 Module 1- Oracle Architecture

Process Monitor (PMON)

_ | Cleans up after
SGA | failed processes by:
“— | - Rolling back the
transaction

| || l[I| - Releasing locks

: OOOOOD - Releasing other

resources
+ Restarting dead

dispatchers
PGA area

SMON

The System Monitor (SMON) does system-level cleanup duties.

e |tis responsible for instance recovery by applying entries in the online redo log files to the
datafiles.

e Other processes can call SMON when it is needed.
e |t also performs other activities as outlined in the figure shown below.

System Monitor (SMON)

' Instance |Responsibilities:
+ Instance recovery
“ | — Rolls forward
: changes in redo logs

| || | — Opens database for

Mo ODOO user access

— Rolls back
R uncommitted
& edo .
Datafiles Control Log transactions
e files files

« Coalesces free space

+ Deallocates temporary
segments

Database

If an Oracle Instance fails, all information in memory not written to disk is lost. SMON is responsible
for recovering the instance when the database is started up again. It does the following:
¢ Rolls forward to recover data that was recorded in a Redo Log File, but that had not yet been
recorded to a datafile by DBWn. SMON reads the Redo Log Files and applies the changes to
the data blocks. This recovers all transactions that were committed because these were
written to the Redo Log Files prior to system failure.
e Opens the database to allow system users to logon.
¢ Rolls back uncommitted transactions.

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 23/33

4/21/2016

Module 1- Oracle Architecture

SMON also does limited space management. It combines (coalesces) adjacent areas of free space
in the database's datafiles for tablespaces that are dictionary managed.

It also deallocates temporary segments to create free space in the datafiles.

DBWn (also called DBWR in earlier Oracle Versions)

The Database Writer writes modified blocks from the database buffer cache to the datafiles.

One database writer process (DBWO) is sufficient for most systems.

A DBA can configure up to 20 DBWn processes (DBWO through DBW9 and DBWa through
DBWij) in order to improve write performance for a system that modifies data heavily.

The initialization parameter DB_WRITER_PROCESSES specifies the number of DBWn
processes.

The purpose of DBWn is to improve system performance by caching writes of database blocks from
the Database Buffer Cache back to datafiles.

Blocks that have been modified and that need to be written back to disk are termed "dirty
blocks."

The DBWhn also ensures that there are enough free buffers in the Database Buffer Cache to
service Server Processes that may be reading data from datafiles into the Database Buffer
Cache.

Performance improves because by delaying writing changed database blocks back to disk, a
Server Process may find the data that is needed to meet a User Process request already
residing in memory!

DBWn writes to datafiles when one of these events occurs that is illustrated in the figure
below.

Database Writer (DBWn)
 Instance | DBWn writes when:
SGA + Checkpoint occurs
Dgta#ase | * Dirty buffers reach
urrer
_Cache 1 threshold

+ There are no free buffers

*« Timeout occurs

e |
QOODO + RAC ping request is made

+ Tablespace OFFLINE
+ Tablespace READ ONLY
E'atflles Control R;_‘-Eo‘_-’g‘-’ » Table DROP or TRUNCATE

Hiss files” |. Taplespace BEGIN
BACKUP

Database

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 24/33

4/21/2016 Module 1- Oracle Architecture

LGWR

The Log Writer (LGWR) writes contents from the Redo Log Buffer to the Redo Log File that is in
use.

e These are sequential writes since the Redo Log Files record database modifications based on
the actual time that the modification takes place.

e LGWR actually writes before the DBWn writes and only confirms that a COMMIT operation
has succeeded when the Redo Log Buffer contents are successfully written to disk.

e LGWR can also call the DBWn to write contents of the Database Buffer Cache to disk.

e The LGWR writes according to the events illustrated in the figure shown below.

Log Writer (LGWR)

 Instance | LGWR writes:
SGA | | + At commit
Redolog||l . ywhen one-third full

L_Buffer |}l . when there is 1 MB of
[—— 1| | redo

DO@SO - Every three seconds

Before DBWn writes

Datafiles Control Fll_edo
t; ONTrol L+]
e She Gne

Database

CKPT

The Checkpoint (CPT) process writes information to update the database control files and headers
of datafiles.

¢ A checkpoint identifies a point in time with regard to the Redo Log Files where instance
recovery is to begin should it be necessary.

e |t can tell DBWn to write blocks to disk.

e A checkpoint is taken at a minimum, once every three seconds.

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 25/33

4/21/2016 Module 1- Oracle Architecture

Checkpoint (CKPT)
==~ Instance =~~~ |Responsible for:
SGA + Signaling DBWhn at

checkpoints

« Updating datafile
headers with
checkpoint information

d . Updating control files
with checkpoint
information

Redo

Yatafiles Control Lo
Datafiles e ﬁlegs

Database

Think of a checkpoint record as a starting point for recovery. DBWn will have completed writing all
buffers from the Database Buffer Cache to disk prior to the checkpoint, thus those records will not
require recovery. This does the following:
e Ensures modified data blocks in memory are regularly written to disk — CKPT can call the
DBWn process in order to ensure this and does so when writing a checkpoint record.
e Reduces Instance Recovery time by minimizing the amount of work needed for recovery since
only Redo Log File entries processed since the last checkpoint require recovery.
e Causes all committed data to be written to datafiles during database shutdown.

System Global Area
(SGA)

Database
Buffer Cache

DBWn

CKPT
Control I Data File

Header

Data File
Body

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 26/33

4/21/2016 Module 1- Oracle Architecture

If a Redo Log File fills up and a switch is made to a new Redo Log File (this is covered in more detail
in a later module), the CKPT process also writes checkpoint information into the headers of the
datafiles.

Checkpoint information written to control files includes the system change number (the SCN is a
number stored in the control file and in the headers of the database files that are used to ensure that
all files in the system are synchronized), location of which Redo Log File is to be used for recovery,
and other information.

CKPT does not write data blocks or redo blocks to disk — it calls DBWn and LGWR as necessary.

MMON and MMNL

The Manageability Monitor Process (MMNO) performs tasks related to the Automatic Workload
Repository (AWR) — a repository of statistical data in the SYSAUX tablespace (see figure below) —
for example, MMON writes when a metric violates its threshold value, taking snapshots, and
capturing statistics value for recently modified SQL objects.

Database Instance

System Global Area (SGA)

Statistics | MMON

Memory

Disk

v
SYSAUX Tablespace

Automatic Workload
Repository

Snapshots
O — | —

—

The Manageability Monitor Lite Process (MMNL) writes statistics from the Active Session History
(ASH) buffer in the SGA to disk. MMNL writes to disk when the ASH buffer is full.

The information stored by these processes is used for performance tuning — we survey performance
tuning in a later module.

RECO

The Recoverer Process (RECO) is used to resolve failures of distributed transactions in a
distributed database.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 27/33

4/21/2016 Module 1- Oracle Architecture

e Consider a database that is distributed on two servers — one in St. Louis and one in Chicago.

e Further, the database may be distributed on servers of two different operating systems, e.g.
LINUX and Windows.

e The RECO process of a node automatically connects to other databases involved in an in-
doubt distributed transaction.

e When RECO reestablishes a connection between the databases, it automatically resolves all
in-doubt transactions, removing from each database's pending transaction table any rows that
correspond to the resolved transactions.

Optional Background Processes

Optional Background Process Definition:

e ARCn: Archiver — One or more archiver processes copy the online redo log files to archival
storage when they are full or a log switch occurs.

e CJQO: Coordinator Job Queue — This is the coordinator of job queue processes for an instance.
It monitors the JOBS$ table (table of jobs in the job queue) and starts job queue processes (Jnnn)
as needed to execute jobs The Jnnn processes execute job requests created by the
DBMS_JOBS package.

e Dnnn: Dispatcher number "nnn", for example, DO00 would be the first dispatcher process —
Dispatchers are optional background processes, present only when the shared server
configuration is used. Shared server is discussed in your readings on the topic "Configuring
Oracle for the Shared Server".

o FBDA: Flashback Data Archiver Process — This archives historical rows of tracked tables into
Flashback Data Archives. When a transaction containing DML on a tracked table commits, this
process stores the pre-image of the rows into the Flashback Data Archive. It also keeps metadata
on the current rows. FBDA automatically manages the flashback data archive for space,
organization, and retention

Of these, you will most often use ARCn (archiver) when you automatically archive redo log file
information (covered in a later module).

ARCn

While the Archiver (ARCn) is an optional background process, we cover it in more detail because it
is almost always used for production systems storing mission critical information.
e The ARCn process must be used to recover from loss of a physical disk drive for systems that
are "busy" with lots of transactions being completed.

e |t performs the tasks listed below.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 28/33

4/21/2016 Module 1- Oracle Architecture

Archiver (ARCn)

+ Optional background process

+ Automatically archives online redo logs when
ARCHIVELOG mode is set

+ Preserves the record of all changes made to the
database

. . Redo _ .
) : ARCh Archived:

Datafil Centrol Lo Archive
ickided files ﬁleg ""Re#lqéls_;qg

/4

When a Redo Log File fills up, Oracle switches to the next Redo Log File.

e The DBA creates several of these and the details of creating them are covered in a later
module.

¢ |If all Redo Log Files fill up, then Oracle switches back to the first one and uses them in a
round-robin fashion by overwriting ones that have already been used.

e Overwritten Redo Log Files have information that, once overwritten, is lost forever.

ARCHIVELOG Mode:

e |f ARCnis in what is termed ARCHIVELOG mode, then as the Redo Log Files fill up, they are
individually written to Archived Redo Log Files.

e LGWR does not overwrite a Redo Log File until archiving has completed.
e Committed data is not lost forever and can be recovered in the event of a disk failure.
¢ Only the contents of the SGA will be lost if an Instance fails.

In NOARCHIVELOG Mode:
e The Redo Log Files are overwritten and not archived.
e Recovery can only be made to the last full backup of the database files.

e All committed transactions after the last full backup are lost, and you can see that this could
cost the firm a lot of $$$.

When running in ARCHIVELOG mode, the DBA is responsible to ensure that the Archived Redo Log

Files do not consume all available disk space! Usually after two complete backups are made, any
Archived Redo Log Files for prior backups are deleted.

Slave Processes

Slave processes are background processes that perform work on behalf of other processes.

Innn: 1/O slave processes -- simulate asynchronous I/O for systems and devices that do not
support it. In asynchronous 1/O, there is no timing requirement for transmission, enabling other
processes to start before the transmission has finished.

e For example, assume that an application writes 1000 blocks to a disk on an operating system
that does not support asynchronous I/O.

e Each write occurs sequentially and waits for a confirmation that the write was successful.

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 29/33

4/21/2016 Module 1- Oracle Architecture

e With asynchronous disk, the application can write the blocks in bulk and perform other work
while waiting for a response from the operating system that all blocks were written.

Parallel Query Slaves -- In parallel execution or parallel processing, multiple processes work
together simultaneously to run a single SQL statement.

e By dividing the work among multiple processes, Oracle Database can run the statement more
quickly.

e For example, four processes handle four different quarters in a year instead of one process
handling all four quarters by itself.

e Parallel execution reduces response time for data-intensive operations on large databases
such as data warehouses. Symmetric multiprocessing (SMP) and clustered system gain the
largest performance benefits from parallel execution because statement processing can be
split up among multiple CPUs. Parallel execution can also benefit certain types of OLTP and
hybrid systems.

Logical Structure

It is helpful to understand how an Oracle database is organized in terms of a logical structure that is
used to organize physical objects.

Data Storage

Database Blocks=
Extent 16K E;:f"t Extent 16K Extent 12K
Department Table Employee Emp_Index
Segment Table Segment Segment
Indexes
Tables Tablespace Tablespace

Y
Database

Database Blocks are allocated to extents as specified in data storage clauses, Each
object {table, index, cluster) is allocated a single segment which is comprised of one or
more extents. Segments are stored to Tablespaces as determined by the DEA when the
objectis created. All of the Tablespaces taken together compnse the Database.

Tablespace: An Oracle database must always consist of at least two tablespaces (SYSTEM and
SYSAUX), although a typical Oracle database will multiple tablespaces.

e Atablespace is a logical storage facility (a logical container) for storing objects such as tables,
indexes, sequences, clusters, and other database objects.

e Each tablespace has at least one physical datafile that actually stores the tablespace at the
operating system level. A large tablespace may have more than one datafile allocated for
storing objects assigned to that tablespace.

e Atablespace belongs to only one database.

e Tablespaces can be brought online and taken offline for purposes of backup and management,

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 30/33

http://docs.oracle.com/cd/E11882_01/server.112/e25789/glossary.htm#CHDBBEFA

4/21/2016 Module 1- Oracle Architecture

except for the SYSTEM tablespace that must always be online.
e Tablespaces can be in either read-only or read-write status.

Datafile: Tablespaces are stored in datafiles which are physical disk objects.

e A datafile can only store objects for a single tablespace, but a tablespace may have more than
one datafile — this happens when a disk drive device fills up and a tablespace needs to be
expanded, then it is expanded to a new disk drive.

e The DBA can change the size of a datafile to make it smaller or later. The file can also grow in
size dynamically as the tablespace grows.

Segment: When logical storage objects are created within a tablespace, for example, an employee
table, a segment is allocated to the object.

e Obviously a tablespace typically has many segments.

¢ A segment cannot span tablespaces but can span datafiles that belong to a single tablespace.

Extent: Each object has one segment which is a physical collection of extents.
e Extents are simply collections of contiguous disk storage blocks. A logical storage object
such as a table or index always consists of at least one extent — ideally the initial extent
allocated to an object will be large enough to store all data that is initially loaded.

e As a table or index grows, additional extents are added to the segment.
e A DBA can add extents to segments in order to tune performance of the system.
¢ An extent cannot span a datafile.

Block: The Oracle Server manages data at the smallest unit in what is termed a block or data
block. Data are actually stored in blocks.

Database Block

: Grows
Common and Yariable Do

Header
Table Directory \l/

Row Directory

Free Space

Row Data

T

Data Loads
from
Eottom Up

A physical block is the smallest addressable location on a disk drive for read/write operations.
An Oracle data block consists of one or more physical blocks (operating system blocks) so the data

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 31/33

4/21/2016 Module 1- Oracle Architecture
block, if larger than an operating system block, should be an even multiple of the operating system
block size, e.g., if the Linux operating system block size is 2K or 4K, then the Oracle data block
should be 2K, 4K, 8K, 16K, etc in size. This optimizes I/O.

The data block size is set at the time the database is created and cannot be changed. It is set with
the DB_BLOCK_SIZE parameter. The maximum data block size depends on the operating system.

Thus, the Oracle database architecture includes both logical and physical structures as follows:
e Physical: Control files; Redo Log Files; Datafiles; Operating System Blocks.
e Logical: Tablespaces; Segments; Extents; Data Blocks.

SQL Statement Processing

SQL Statements are processed differently depending on whether the statement is a query, data
manipulation language (DML) to update, insert, or delete a row, or data definition language (DDL) to
write information to the data dictionary.

Processing SQL Statements

» Connect to an instance using:
— User process
— Server process
+ The Oracle server components that are used
depend on the type of SQL statement:
— Queries return rows
— DML statements log changes
— Commit ensures transaction recovery
« Some Oracle server components do not participate
in SQL statement processing

Processing a query:

e Parse:
o Search for identical statement in the Shared SQL Area.
o Check syntax, object names, and privileges.
o Lock objects used during parse.
o Create and store execution plan.

e Bind: Obtains values for variables.

e Execute: Process statement.

e Fetch: Return rows to user process.

Processing a DML statement:
e Parse: Same as the parse phase used for processing a query.
e Bind: Same as the bind phase used for processing a query.

e Execute:
o If the data and undo blocks are not already in the Database Buffer Cache, the server
process reads them from the datafiles into the Database Buffer Cache.

http://iwww.siue.edu/~dbock/cmis565/module1-architecture.htm 32/33

4/21/2016 Module 1- Oracle Architecture

o The server process places locks on the rows that are to be modified. The undo block is
used to store the before image of the data, so that the DML statements can be rolled
back if necessary.

o The data blocks record the new values of the data.

o The server process records the before image to the undo block and updates the data
block. Both of these changes are made in the Database Buffer Cache. Any changed
blocks in the Database Buffer Cache are marked as dirty buffers. That is, buffers that
are not the same as the corresponding blocks on the disk.

o The processing of a DELETE or INSERT command uses similar steps. The before image
for a DELETE contains the column values in the deleted row, and the before image of an
INSERT contains the row location information.

Processing a DDL statement:

e The execution of DDL (Data Definition Language) statements differs from the execution of
DML (Data Manipulation Language) statements and queries, because the success of a DDL
statement requires write access to the data dictionary.

e For these statements, parsing actually includes parsing, data dictionary lookup, and
execution. Transaction management, session management, and system management SQL
statements are processed using the parse and execute stages. To re-execute them, simply
perform another execute.

END OF NOTES

http://www_siue.edu/~dbock/cmis565/module1-architecture.htm 33/33

